P76 - 17
1. (a)
$$u_{x} \equiv 3$$
 $v_{x} = -1$
 $u_{y} \equiv 1$ $v_{y} \equiv 3$
By Concepty-Riemann equation, f is entire.
(b) $u_{x} = \sinh x \cos y$ $v_{x} = \cosh x \sin y$
 $u_{y} = -\cosh x \sin y$ $v_{y} = \sinh x \cos y$
By Concepty-Riemann equation, f is entire.
(c) $u_{x} = e^{-y}\cos x$ $v_{x} = e^{-y}\cos x$
By Concepty-Riemann equation, f is entire.
(d) $f_{(2)} = (z^{2}-2)e^{-x}e^{-iy}$
Let $g(x) = e^{-x}e^{-iy} = e^{-x}\cos y - ie^{-x}\sin y$
 $:= u(x, y) + i v(x, y)$.
Clearly, $z^{2}-2$ is entire. Therefore, fg is entire,
 $u_{x} = -e^{-x}\cos y$ $v_{x} = e^{-x}\sin y$
 $u_{y} = -e^{-x}\sin y$ $v_{y} = -e^{-x}\cos y$
By Concepty-Riemann equation, g is entire.
 $u_{x} = -e^{-x}\sin y$ $v_{y} = -e^{-x}\cos y$
By Concepty-Riemann equation, g is entire.
Hence, f is entire.

$$(c) f(z) = e^{j}e^{imx} = e^{j}\cos x + ie^{j}\sin x$$

$$u_{x} = -e^{j}\sin x \quad v_{x} = e^{j}\cos x$$

$$u_{y} = e^{j}\cos x \quad v_{y} = e^{j}\sin x$$

7. Let
$$f(z) = u(x, y) + iv(x, y)$$
.
Since f is real-valued, $v \equiv 0$.
Since f is entire, $\begin{cases} u_x = v_y \equiv 0 \\ u_y = -v_x \equiv 0 \end{cases}$ by C-R equation.
Therefore, $u \equiv constant$.
Hence, $f \equiv constant$.

П

$$P \ 89 \ -90$$

 $I. (a) \ exp(2 \pm 3\pi i) = e^2 \cdot e^{\pm 3\pi i}$
 $= e^2 \cdot e^{\pi i}$
 $= e^2 \cdot (-1)$
 $= -e^2$

(b)
$$exp(\frac{2+\pi i}{4}) = e^{\frac{1}{2}} \cdot e^{\frac{\pi}{4}i}$$

= $e^{\frac{1}{2}} \cdot (\frac{\pi}{2} + \frac{\pi}{2}i)$
= $\sqrt{\frac{e}{2}} (1+i)$

(c)
$$exp(z+\pi i) = e^{z} e^{\pi i}$$

= $e^{z} \cdot (-1)$
= $-e^{z}$.

3.
$$f(z) = exp\overline{z} = exp(x-iy) = e^{x}co3y - ie^{x}siny$$

 $U_x = e^{x}co3y$ $U_x = -e^{x}siny$
 $U_y = -e^{x}siny$ $V_y = -e^{x}co3y$
By Cauchy-Riemann equation, f is nowhere
differentiable. Hence, f is nowhere analytic.

 \square

3. Let
$$g(z) = U(x,y) + iV(x,y)$$

 $= e^{u(x,y)} (\cos v(x,y) + i \sin v(x,y))$
 $= e^{u(x,y) + i v(x,y)}$
 $= e^{f(z)}$
Since f is analytic, so is g .
Then U and V are both harmonic

P 95 - 96
1. (a)
$$log(-ei) = log(e \cdot (-i))$$

 $= log(e \cdot e^{-\frac{\pi}{2}i})$
 $= log(e^{1-\frac{\pi}{2}i})$
 $= 1 - \frac{\pi}{2}i$

(b)
$$\log (1-i) = \log (\sqrt{2}(\frac{\pi}{2} - \frac{\pi}{4}i))$$

 $= log(2^{\frac{1}{2}}e^{-\frac{\pi}{4}i})$
 $= ln 2^{\frac{1}{2}} - \frac{\pi}{4}i$
 $= \frac{1}{2}ln 2 - \frac{\pi}{4}i$

$$5 (a) \quad (e^{\frac{\pi}{4}i})^{2} = e^{\frac{\pi}{2}i} = i$$

$$(e^{\frac{\pi}{4}\pi}i)^{2} = e^{\frac{\pi}{2}\pi}i = e^{\frac{\pi}{2}i} = i$$

$$log(e^{\frac{\pi}{4}i}) = log(e^{\frac{\pi}{4}i+2n\pi}i) = (2n+\frac{1}{4})\pi i , n\in\mathbb{Z}.$$

$$log(e^{\frac{\pi}{4}\pi}i) = log(e^{\frac{\pi}{4}i+2n\pi}i) = (2n+\frac{1}{4})\pi i = ((2n+1)+\frac{1}{4})\pi i ,$$

$$Hume , log(i^{\frac{1}{2}}) = (n+\frac{1}{4})\pi i , n\in\mathbb{Z}.$$

$$(b) \frac{1}{2} log i = \frac{1}{2} log e^{\frac{\pi}{2}i+2n\pi}i)$$

$$= \frac{1}{2} (\frac{1}{2}+2n)\pi i , n\in\mathbb{Z}.$$

$$= (\frac{1}{4}+n)\pi i , n\in\mathbb{Z}.$$

$$= log(i^{\frac{1}{2}}) \quad by(a).$$

Π

D

$$P \mid 03$$

2. (a) $(-i)^{i} = (e^{-\frac{\pi}{2}i})^{i}$
 $= e^{\frac{\pi}{2}}$

(b)
$$\left[\frac{e}{2}(-1-\sqrt{3}i)\right]^{3\pi i}$$

= $\left(e \cdot e^{-\frac{2}{3}\pi i}\right)^{3\pi i}$
= $e^{\left(1-\frac{2}{3}\pi i\right)(3\pi i)}$
= $e^{3\pi i + 2\pi^{2}}$
= $-e^{2\pi^{2}}$

(c)
$$(1-i)^{4i} = (\sqrt{2}e^{-\frac{\pi}{4}i})^{4i}$$

= $(e^{\frac{1}{2}\ln 2 - \frac{\pi}{4}i})^{4i}$
= $e^{\pi + i2\hbar 2}$
= $e^{\pi} [\cos(2\hbar 2) + i\sin(2\hbar 2)]$